skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mantripragada, Shobha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The careful modulation of RuO2content in TiO2nanostructures plays a crucial role in optimizing photochemical properties resulting in water splitting under visible light, making them promising candidates for solar-driven hydrogen generation. 
    more » « less
    Free, publicly-accessible full text available May 13, 2026
  2. The algae-derived bio-binder (ADBB) from hydrothermal liquefaction has been reported to be an effective and sustainable new alternative to petroleum-based curing agents for epoxy resin. However, there is still room for the epoxy/ADBB system to attain the comprehensive mechanical performance of conventional epoxy-based nanocomposites, typically reinforced with surface-functionalized nanofillers (e.g., glass nanoparticles (GNPs)) by petroleum-based silane coupling agents. Herein, we explored the use of ADBB as an innovative surface-modifying agent to functionalize GNPs and evaluated the potential of ADBB surface-functionalized GNPs (ADBB-GNPs) as a reinforcing agent in the epoxy/ADBB matrix nanocomposite by comparing them to pristine GNPs and (3-aminopropyl) triethoxysilane (APTES) (a popular silane coupling agent) surface-modified GNPs (APTES-GNPs). The surface functionalization of GNPs with ADBB was carried out and characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). Material performance including tensile, flexural, and Izod impact properties and thermal properties of the resulting epoxy/ADBB nanocomposites were investigated by corresponding ASTM mechanical test standards and thermogravimetric analysis (TGA). Our results revealed that the ADBB is a sustainable and effective surface-modifying agent that can functionalize GNPs. The obtained ADBB-GNPs significantly improved the mechanical performance of the epoxy/ADBB system at ultra-low loading (0.5 wt.%) by up to 42% and the maximum decomposition rate temperature increased from 419 °C to 422 °C, both of which outperformed APTES-GNPs. This research sheds light on developing sustainable surface-modifying agents for nanofillers to create high-performance sustainable polymer composite materials. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. GenX, the trade name of hexafluoropropylene oxide dimer acid (HFPO-DA) and its ammonium salt, is a short-chain PFAS that has emerged as a substitute for the legacy PFAS perfluorooctanoic acid (PFOA). However, GenX has turned out to be more toxic than people originally thought. In order to monitor and regulate water quality according to recently issued drinking water standards for GenX, rapid and ultrasensitive detection of GenX is urgently needed. For the first time, this study reports ultrasensitive (as low as 1 part per billion (ppb)) and fast detection (in minutes) of GenX in water via surface-enhanced Raman spectroscopy (SERS) using a hierarchical nanofibrous SERS substrate, which was prepared by assembling ~60 nm Ag nanoparticles on electrospun nylon-6 nanofibers through a “hot start” method. The findings in this research highlight the potential of the engineered hierarchical nanofibrous SERS substrate for enhanced detection of short-chain PFASs in water, contributing to the improvement of environmental monitoring and management strategies for PFASs. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  4. Algae is a promising sustainable feedstock for the generation of bio-crude oil, which is a sustainable alternative to fossil fuels, through the thermochemical process of hydrothermal liquefaction (HTL). However, this process also generates carbon particles (algae-derived carbon, ADC) as a significant byproduct. Herein, we report a brand-new and value-added use of ADC particles as a reinforcing agent for epoxy matrix composites (EMCs). ADC particles were synthesized through HTL processing of Chlorella vulgaris (a green microalgae) and characterized for morphology, average size, specific surface area, porosity, and functional groups. The ADC particles were subsequently integrated into a representative epoxy resin (EPON 862) as a reinforcing filler at loading levels of 0.25%, 0.5%, 1%, and 2% by weight. The tensile, flexural, and Izod impact properties, as well as the thermal stability, of the resulting EMCs were evaluated. It is revealed that the ADC particles are a sustainable and effective reinforcing agent for EMCs at ultra-low loading. Specifically, the ADC-reinforced EMC with 1 wt.% ADC showed improvements of ~24%, ~30%, ~31%, and ~57% in tensile strength, Young’s modulus, elongation at break, and work of fracture (WOF), respectively, and improvements of ~10%, ~37%, ~24%, and ~39% in flexural strength, flexural modulus, flexural elongation at break, and flexural WOF, respectively, as well as an improvement of ~54% in Izod impact strength, compared to those corresponding properties of neat epoxy. In the meantime, the thermal decomposition temperatures at 60% and 80% weight loss of the abovementioned ADC-reinforced EMC increased from 410 °C to 415 °C and from 448 °C to 515 °C in comparison with those of neat epoxy. This study highlighted the potential of sustainable ADC particles as a reinforcing agent in the field of polymer matrix composite materials, which represented a novel and sustainable approach that would mitigate greenhouse gas remission and reduce reliance on nonrenewable reinforcing fillers in the polymer composite industry. 
    more » « less
  5. Abstract Conjugated polymer brush (CPB) films are more robust and exhibit more vertically aligned polymer chains than their spun‐cast analogs. We prepare CPB films of poly(3‐hexylthiophene) (P3HT) by coupling an amine‐terminated surface (ATS) formed from (3‐aminopropyl)triethoxysilane (APTES) on Si/SiO2to 4‐bromobenzoic acid using standard, inexpensive peptide coupling reagents. The resulting terminal bromobenzene is reacted with Pd(PtBu3)2and immersed in the monomer solution. X‐ray photoelectron spectroscopy, spectroscopic ellipsometry and static water contact angle measurements confirm the surface chemistry at each stage of P3HT CPB preparation. Atomic force microscopy(AFM) and UV–vis spectrophotometry indicate that the CPB films prepared by this method exhibit similar morphology and optical properties to those produced from other methods of poly(3‐alkylthiophene) CPB film preparation. Variations of the standard approach, such as using a pre‐synthesized silane counterpart or with (11‐aminoundecyl)triethoxysilane, show comparable film morphologies by AFM. This method is used to produce the first CPB film of poly(3‐dodecylthiophene), showing its utility for exploring CPB films of more sterically demanding polymers. Peptide coupling is used to prepare an analogous functionalized thiol for initiating P3HT CPB film growth from Au surfaces, and microcontact printing with this thiol allows preparation of the first patterned CPB film of P3HT. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025